If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+11X-3960=0
a = 1; b = 11; c = -3960;
Δ = b2-4ac
Δ = 112-4·1·(-3960)
Δ = 15961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{15961}}{2*1}=\frac{-11-\sqrt{15961}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{15961}}{2*1}=\frac{-11+\sqrt{15961}}{2} $
| 2x-3*2x-3=13 | | (2x-3)x^2=13 | | 8x+99=57 | | 3-3m=0(m=1) | | 2-4(1/9x)=-9 | | 15x+1=3x+1 | | X+3=2(x=1) | | x10−4=1 | | √3x^2+6x-5=0 | | 26+e-5=0 | | -17=(1/3)(y+9) | | (1–2x)(1–3x)=(6x–1)x–1; | | 3x+6=8x-30 | | x+1/6=2/3+x-1/4 | | 5(2-1)=16x | | 5/7x-7=23 | | 4z/7=13 | | 10x–12=38 | | (x+3)/2=(x-5)/6 | | x(5/2-7)=23 | | 4*x=275 | | 8x-84=5x-6 | | 3n+4=7(n=1) | | √8x-3=√9x+5 | | X^3-96x-576=0 | | |4x|+3=23 | | 2(x8)+7=5(x+2)4 | | 3(4-2j)-j=-11+2(j-11) | | 4x+2.6=3.8x | | 5x−15−20x+10=5(x−3−4x+2) | | 8x15=4x+12 | | 5(2p+3)=65 |